Belajar Kimia Yuk..............

Blog Materi Pelajaran Kimia MAN (Sangkal Putung) Klaten

January, 2010

 

Hidrolisis Garam dalam Kehidupan Sehari-Hari

Agar tanaman tumbuh dengan baik, maka pH tanaman harus dijagam pH tanah di daerah pertanian harus disesuaikan dengan pH tanamannya. Oleh karena itu diperlukan pupuk yang dapat menjaga pH tanah agar tidak terlalu asam atau basa. Biasanya para petani menggunakan pelet padat (NH 4 ) 2 SO 4 untuk menurunkan pH tanah. Garam (NH 4 ) 2 SO 4 bersifat asam, ion NH 4 + akan terhidrolisis dalam tanah membentuk NH 3 dan H + yang bersifat asam.



Kita juga sering memakai bayclin atau sunklin untuk memutihkan pakaian kita. Produk ini mengandung kira-kira 5 % NaOCl yang sangat reaktif sehingga dapat menghancurkan pewarna, sehingga pakaian menjadi putih kembali. Garam ini terbentuk dari asam lemah HOCl dengan basa kuat NaOH. Ion OCl - terhidrolisis menjadi HOCl dan OH -, sehingga garam NaOCl bersifat basa.

 
 

Menentukan pH Larutan Garam

Garam yang mengalami hidrolisis membentuk suatu reaksi kesetimbangan. Pada reaksi kesetimbangan anion basa atau kation asam, akan dibebaskan OH - atau H + . Ion OH - dan ion H + inilah yang dapat menentukan apakah larutan tersebut bersifat asam, basa atau netral. Karena hidrolisis garam merupakan reaksi refersibel (bolak-balik), maka reaksi ini mempunyai tetapan kesetimbangan yang disebut tetapan hidrolisis (Kh). Besarnya Kh bergantung pada harga tetapan ionisasi asam (Ka) atau tetapan ionisasi basa (Kb). Tetapan hidrolisis dapat digunakan untuk menentukan pH larutan garam.

1. Garam dari Asam Kuat dengan Basa Kuat

Garam yang berasal dari asam kuat dan basa kuat jika dilarutkan dalam air menunjukkan reaksi netral, karena anion maupun kationnya masing-masing tidak ada yang bergabung dengan ion hidrogen atau hidroksida. Untuk menentukan produk yang sangat sedikit berdisosiasi. Karena itu kesetimbangan air tidak terganggu.

H 2 O (l) H + (aq) + OH - (aq)

Karena konsetrasi H + dan OH - dalam larutan sama, maka larutan bersifat netral (pH=7)

2. Garam dari Asam Kuat dengan Basa Lemah

Jika garam yang berasal dari asam kuat dengan basa lemah dilarutkan ke dalam air, maka larutan tersebut bersifat asam (pH < 7). Kation asam (BH + ) dari garam bereaksi dengan air yang menghasilkan ion H 3 O + .

BH + (aq) + H 2 O (l) B (aq) + H 3 O + (aq) .

Reaksi ini mempunyai tetapan hidrolisis (Kh) sebagai berikut.

Konsentrasi BH + semula, sama dengan konsentrasi garamnya. Jika konsentrasi BH + mula-mula sebesar M dan hidrolisis sebesar α, maka konsentrasi semua komponen dalam persamaan tersebut adalah:


Karena nilai α sangat kecil, maka besarnya α pada M-α diabaikan, sehingga untuk M-α = M. Besarnya konsentrasi B dan H 3 O + adalah sama. Karena H 3 O + dapat diganti H +, persamaan tetapan hidrolisis dapat ditulis.


Suatu basa dapat mengalami kesetimbangan sebagai berikut.

(aq) + H 2 O (l) BH + (aq) + OH - (l)

Selanjutnya konsentrasi ion H + dapat ditulis:


Keterangan:
Kh : tetapan hidrolisis
Kw : tetapan kesetimbangan air
Kb : tetapan ionisasi basa
[BH + ] : konsentrasi kation dari garam

3. Garam dari Asam Lemah dengan Basa Kuat

Garam yang berasal dari asam lemah dengan basa kuat jika dilarutkan dalam air maka larutan tersebut bersifat basa (pH > 7). Anion basa (A - ) dari garam bereaksi dalam air yang menghasilkan ion OH - .

A - (aq) + H 2 O (l) HA (aq) + OH - (aq)

Reaksi ini mempunyai tetapan hidrolisis sebagai berikut.

Konsentrasi A - semula sama dengan konsentrasi garamnya. Jika konsentrasi A - mula-mula sebesar M dan terhidrolisis sebesar α, maka untuk konsentrasi semua komponen dalam persamaan tersebut adalah:


Karena nilai α relatif kecil (dapat diabaikan) sehingga nilai (M-α) sama dengan M.

Asam lemah akan terionisasi menjadi:

HA H + + A -

Konsentrasi HA sama dengan konsentrasi OH -, sehingga diperoleh persamaan tetapan:

Selanjutnya konsentrasi OH - dapat dihitung dengan rumus:

Keterangan:

Kh : tetapan hidrolisis

Kw : tetapan kesetimbangan air

Ka : tetapan ionisasi asam

[A-] : konsentrasi anion dari garam

4. Garam dari Asam Lemah dan Basa Lemah

Garam yang berasal dari asam lemah dan basa lemah jika dilarutkan dalam air dapat bersifat asam, basa atau netral tergantung pada kekuatan relatif asam dan basa penyusunnya. Larutan garam ini akan terhidrolisis sempurna baik kation [BH + ] maupun anionnya [A - ].

Tetapan hidrolisis (Kh) dari hidrolisis di atas dapat ditulis sebagai berikut.

Selanjutnya untuk menghitung [H + ] adalah sebagai berikut.



Keterangan:

Kh : tetapan hidrolisis

Kw : tetapan kesetimbangan air

Ka : tetapan ionisasi asam

Kb : tetapan ionisasi basa

 
 

Konsep Hidrolisis Garam



Pencampuran larutan asam dengan larutan basa akan menghasilkan garam dan air. Namun demikian, garam dapat bersifat asam, basa maupun netral. Sifat garam bergantung pada jenis komponen asam dan basanya. Garam dapat terbentuk dari asam kuat dengan basa kuat, asam lemah dengan basa kuat, asam kuat dengan basa lemah, atau asam lemah dengan basa lemah. Jadi, sifat asam basa suatu garam dapat ditentukan dari kekuatan asam dan basa penyusunnya. Sifat keasaman atau kebasaan garam ini disebabkan oleh sebagian garam yang larut bereaksi dengan air. Proses larutnya sebagian garam bereaksi dengan air ini disebut hidrolisis (hidro yang berarti air dan lisis yang berarti peruraian).

1. Garam dari Asam Kuat dengan Basa Kuat

Asam kuat dan basa kuat bereaksi membentuk garam dan air. Kation dan anion garam berasal dari elektrolit kuat yang tidak terhidrolisis, sehingga larutan ini bersifat netral, pH larutan ini sama dengan 7.

Contoh

Larutan KCl berasal dari basa kuat KOH terionisasi sempurna membentuk kation dan anionnya. KOH terionisasi menjadi H + dan Cl - . Masing-masing ion tidak bereaksi dengan air, reaksinya dapat ditulis sebagai berikut.

KCl (aq) → K + (aq) + Cl - (aq)

K + (aq) + H 2 O (l)

Cl - (aq) + H 2 O (l)

2. Garam dari Asam Kuat dengan Basa Lemah

Garam yang terbentuk dari asam kuat dengan basa lemah mengalami hidrolisis sebagian (parsial) dalam air. Garam ini mengandung kation asam yang mengalami hidrolisis. Larutan garam ini bersifat asam, pH <7.

Contoh

Amonium klorida (NH 4 Cl) merupakan garam yang terbentuk dari asam kuat, HCl dalam basa lemah NH 3 . HCl akan terionisasi sempurna menjadi H + dan Cl - sedangkan NH 3 dalam larutannya akan terionisasi sebagian membentuk NH 4 + dan OH - . Anion Cl - berasal dari asam kuat tidak dapat terhidrolisis, sedangkan kation NH 4 + berasal dari basa lemah dapat terhidrolisis.

NH 4 Cl (aq) → NH 4 + (aq) + Cl - (aq)

Cl - (aq) + H 2 O (l)

NH 4 + (aq) + H 2 O (l) NH 3 (aq) + H 3 O + (aq)

Reaksi hidrolisis dari amonium (NH 4 + ) merupakan reaksi kesetimbangan. Reaksi ini menghasilkan ion oksonium (H 3 O + ) yang bersifat asam (pH<7). Secara umum reaksi ditulis:

BH + + H 2 O B + H 3 O +


3. Garam dari Asam Lemah dengan Basa Kuat

Garam yang terbentuk dari asam lemah dengan basa kuat mengalami hidrolisis parsial dalam air. Garam ini mengandung anion basa yang mengalami hidrolisis. Larutan garam ini bersifat basa (pH > 7).

Contoh

Natrium asetat (CH 3 COONa) terbentuk dari asam lemah CH 3 COOH dan basa kuat NaOH. CH 3 COOH akan terionisasi sebagian membentuk CH 3 COO - dan Na + . Anion CH 3 COO - berasal dari asam lemah yang dapat terhidrolisis, sedangkan kation Na + berasal dari basa kuat yang tidak dapat terhidrolisis.

CH 3 COONa (aq) → CH 3 COO - (aq) + Na + (aq)

Na + (aq) + H 2 O (l)

CH 3 COO - (aq) + H 2 O (l) CH 3 COOH (aq) + OH - (aq)

Reaksi hidrolisis asetat (CH 3 COO ) merupakan reaksi kesetimbangannya. Reaksi ini menghasilkan ion OH yang bersifat basa (pH > 7). Secara umum reaksinya ditulis:

A - + H 2 O HA + OH -

4. Garam dari Asam Lemah dengan Basa Lemah

Asam lemah dengan basa lemah dapat membentuk garam yang terhidrolisis total (sempurna) dalam air. Baik kation maupun anion dapat terhidrolisis dalam air. Larutan garam ini dapat bersifat asam, basa, maupun netral. Hal ini bergantung dari perbandingan kekuatan kation terhadap anion dalam reaksi dengan air.

Contoh

Suatu asam lemah HCN dicampur dengan basa lemah, NH 3 akan terbentuk garam NH 4 CN. HCN terionisasi sebagian dalam air membentuk H + dan CN - sedangkan NH 3 dalam air terionisasi sebagian membentuk NH4+ dan OH-. Anion basa CN - dan kation asam NH 4 + dapat terhidrolisis di dalam air.

NH 4 CN (aq) → NH 4 + (aq) + CN - (aq)

NH 4 + (aq) + H 2 O NH 3(aq) + H 3 O (aq) +

CN - (aq) + H 2 O (e) HCN (aq) + OH - (aq)

Sifat larutan bergantung pada kekuatan relatif asam dan basa penyusunnya (Ka dan Kb)

- Jika Ka < Kb (asam lebih lemah dari pada basa) maka anion akan terhidrolisis lebih banyak dan larutan bersifat basa.

- jika Ka > Kb (asam lebih kuat dari pada basa) maka kation akan terhidrolisis lebih banyak dalam larutan bersifat asam.

- Jika Ka = Kb (asam sama lemahnya dengan basa) maka larutan bersifat netral.

 
 

Fungsi Larutan Penyangga

Larutan penyangga sangat penting dalam kehidupan; misalnya dalam analisis kimia, biokimia, bakteriologi, zat warna, fotografi, dan industri kulit. Dalam bidang biokimia, kultur jaringan dan bakteri mengalami proses yang sangat sensitif terhadap perubahan pH. Darah dalam tubuh manusia mempunyai kisaran pH 7,35 sampai 7,45, dan apabila pH darah manusia di atas 7,8 akan menyebabkan organ tubuh manusia dapat rusak, sehingga harus dijaga kisaran pHnya dengan larutan penyangga.

  1. Darah Sebagai Larutan Penyangga

Ada beberapa faktor yang terlibat dalam pengendalian pH darah, diantaranya penyangga karbonat, penyangga hemoglobin dan penyangga fosfat.

a. Penyangga Karbonat

Penyangga karbonat berasal dari campuran asam karbonat (H 2 CO 3 ) dengan basa konjugasi bikarbonat (HCO 3 ).

H 2 CO 3 (aq) --> HCO 3(aq) + H + (aq)

Penyangga karbonat sangat berperan penting dalam mengontrol pH darah. Pelari maraton dapat mengalami kondisi asidosis, yaitu penurunan pH darah yang disebabkan oleh metabolisme yang tinggi sehingga meningkatkan produksi ion bikarbonat. Kondisi asidosis ini dapat mengakibatkan penyakit jantung, ginjal, diabetes miletus (penyakit gula) dan diare. Orang yang mendaki gunung tanpa oksigen tambahan dapat menderita alkalosis, yaitu peningkatan pH darah. Kadar oksigen yang sedikit di gunung dapat membuat para pendaki bernafas lebih cepat, sehingga gas karbondioksida yang dilepas terlalu banyak, padahal CO 2 dapat larut dalam air menghasilkan H 2 CO 3 . Hal ini mengakibatkan pH darah akan naik. Kondisi alkalosis dapat mengakibatkan hiperventilasi (bernafas terlalu berlebihan, kadang-kadang karena cemas dan histeris).

b. Penyangga Hemoglobin

Pada darah, terdapat hemoglobin yang dapat mengikat oksigen untuk selanjutnya dibawa ke seluruh sel tubuh. Reaksi kesetimbangan dari larutan penyangga oksi hemoglobin adalah:

HHb + O 2 (g) « HbO 2 - + H +

Asam hemoglobin ion aksi hemoglobin

Keberadaan oksigen pada reaksi di atas dapat memengaruhi konsentrasi ion H +, sehingga pH darah juga dipengaruhi olehnya. Pada reaksi di atas O 2 bersifat basa. Hemoglobin yang telah melepaskan O 2 dapat mengikat H + dan membentuk asam hemoglobin. Sehingga ion H + yang dilepaskan pada peruraian H 2 CO 3 merupakan asam yang diproduksi oleh CO 2 yang terlarut dalam air saat metabolisme.

c. Penyangga Fosfat

Pada cairan intra sel, kehadiran penyangga fosfat sangat penting dalam mengatur pH darah. Penyangga ini berasal dari campuran dihidrogen fosfat (H 2 PO 4 - ) dengan monohidrogen fosfat (HPO 3 2- ).

H 2 PO 4 - (aq) + H + (aq) --> H 2 PO 4(aq)

H 2 PO 4 - (aq) + OH - (aq) --> HPO 4 2- (aq) ) + H 2 O (aq)

Penyangga fosfat dapat mempertahankan pH darah 7,4. Penyangga di luar sel hanya sedikit jumlahnya, tetapi sangat penting untuk larutan penyangga urin.

  1. Air Ludah sebagai Larutan Penyangga

Gigi dapat larut jika dimasukkan pada larutan asam yang kuat. Email gigi yang rusak dapat menyebabkan kuman masuk ke dalam gigi. Air ludah dapat mempertahankan pH pada mulut sekitar 6,8. Air liur mengandung larutan penyangga fosfat yang dapat menetralisir asam yang terbentuk dari fermentasi sisa-sisa makanan.

  1. Menjaga keseimbangan pH tanaman.

Suatu metode penanaman dengan media selain tanah, biasanya ikerjakan dalam kamar kaca dengan menggunakan mendium air yang berisi zat hara, disebut dengan hidroponik . Setiap tanaman memiliki pH tertentu agar dapat tumbuh dengan baik. Oleh karena itu dibutuhkan larutan penyangga agar pH dapat dijaga.

  1. Larutan Penyangga pada Obat-Obatan

Asam asetilsalisilat merupakan komponen utama dari tablet aspirin, merupakan obat penghilang rasa nyeri. Adanya asam pada aspirin dapat menyebabkan perubahan pH pada perut. Perubahan pH ini mengakibakan pembentukan hormon, untuk merangsang penggumpalan darah, terhambat; sehingga pendarahan tidak dapat dihindarkan. Oleh karena itu, pada aspirin ditambahkan MgO yang dapat mentransfer kelebihan asam.

 
 

Larutan Penyangga Basa

pH larutan penyangga basa bergantung pada tetapan ionisasi basa (Kb), dan perbandingan konsentrasi basa (lemah) dengan konsentrasi asam konjugasinya. Contoh larutan penyangga basa adalah campuran dari gas amonia (NH 3 ) dengan larutan amonium klorida (NH 4 Cl).

Amonia merupakan basa lemah, sehingga hanya terionisasi sebagian, sedangkan amonium klorida akan terionisasi sempurna. Jika terdapat b mol amonia dan g mol amonium klorida, maka susunan reaksinya dapat ditulis sebagai berikut.

NH 3 (aq) + H 2 O (l) --> NH 4 + (aq) + OH - (aq)

Mula-mula b - - mol
Reaksi -α +α +α mol

Akhir (b-α) α α mol

NH 4 Cl (aq) --> NH 4 + (aq) + Cl - (aq)

Mula-mula g - - mol
Reaksi -g +g +g mol

Akhir - g g mol

Pada reaksi kesetimbangan amonia, harga tetapan ionisasi basa adalah sebagai berikut.

sehingga

Berdasarkan kedua reaksi di atas, NH 4 + dari amonium klorida akan menggeser kesetimbangan amonium, sehingga reaksi bergeser ke kiri dengan jumlah mol NH 4 + bertambah dari g menjadi (g + α) mol dan mol NH 3 dari b menjadi (b – α) mol. Karena besarnya α sangat kecil, maka pertambahan jumlah mol NH 4 + dan NH 3 diabaikan, sehingga mol NH 3 = b mol, dan mol NH 4 + = g mol. Dengan demikian, persamaannya dapat ditulis:

dengan V: volume larutan

atau

dengan dasar pH = 14 -pOH, maka








 
 

Larutan penyangga asam

pH larutan penyangga asam tergantung pada tetapan ionisasi asam lemah (Ka) dan perbandingan konsentrasi asam dengan konsentrasi basa konjugasinya, contoh larutan penyangga asam adalah campuran dari larutan asam asetat (CH 3 COOH) dan larutan natrium asetat (CH 3 COONa), asam asetat akan terionisasi sebagian, sedangkan natrium asetat akan terionisasi sempurna. Jika terdapat a mol asam asetat dan g mol natrium asetat, maka susunan reaksinya sebagai berikut.

CH 3 COOH (aq) D CH 3 COO - (aq) + H + (aq)

Mula-mula a - - mol

Reaksi -α +α +α mol

Akhir a- α α α mol


CH 3 COONa (aq) → CH 3 COO - (aq) + Na + (aq)

Mula-mula g - - mol

Reaksi -g +g +g mol
Akhir - g g mol

Reaksi kesetimbangan asam asetat mempunyai harga tetapan ionisasi (Ka) adalah:


sehingga


Berdasarkan kedua reaksi di atas, persamaan tetapan ionisasi Ka, ion CH 3 COO - berasal dari garam dapat mendorong kesetimbangan menuju ke arah kiri, sehingga jumlah mol CH 3 COOH bertambah. Jumlah CH 3 COOH yang terionisasi sebesar (a - α) mol dan jumlah ion CH 3 COO - adalah (g + α) mol. Namun karena α sangat kecil nilai α diabaikan, sehingga mol CH 3 COOH = a mol dan mol CH 3 COO - = g mol.

Dengan demikian, persamaan di atas dapat ditulis:


dengan V = volume larutan




atau

Keterangan:

Ka = tetapan ionisasi asam

a = jumlah mol asam penyangga

g = jumlah mol basa konjugasi (garam)

 
 

Prinsip kerja larutan penyangga

Sebenarnya penambahan sedikit asam, basa, atau pengenceran pada larutan penyangga menimbulkan sedikit perubahan pH (tetapi besar perubahan pH sangatlah kecil) sehingga pH larutan dianggap tidak bertambah atau pH tetap pada kisarannya. Namun, jika asam atau basa ditambahkan ke larutan bukan penyangga maka perubahan pH larutan akan sangat mencolok.

Prinsip kerja dari larutan penyangga yang dapat mempertahankan harga pH pada kisarannya adalah sebagai berikut.

a. Larutan Penyangga Asam HA/A -

HA (aq) --> A - (aq) + H + (aq)

- Jika ditambah sedikit asam kuat (H + )

Ion H + dari asam kuat akan menaikkan konsentrasi H + dalam larutan, sehingga reaksi kesetimbangan larutan terganggu; reaksi akan bergeser ke kiri. Namun, basa konjugasi (A - ) akan menetralisir H + dan membentuk HA

A - (aq) + H + (aq) → HA (aq)

sehingga pada kesetimbangan yang baru tidak terdapat perubahan konsentrasi H + yang berarti, besarnya pH dapat dipertahankan pada kisarannya.

- Jika ditambah sedikit basa kuat (OH - )

Ion OH - dari basa kuat akan bereaksi dengan H + dalam larutan, sehingga konsentrasi H + menurun dan kesetimbangan larutan terganggu. Oleh karena itu, HA dalam larutan akan terionisasi membentuk H + dan A - ; reaksi kesetimbangan bergeser ke kanan

OH - (aq) + H + (aq) → H 2 O (l)

HA (aq) → A - (aq) + H + (aq)

sehingga, pada kesetimbangan yang baru tidak terdapat perubahan konsentrasi H + yang nyata; pH larutan dapat dipertahankan pada kisarannya. Asam lemah dapat menetralisir penambahan sedikit basa OH - .

HA (aq) + OH - (aq) → A - (aq) + H 2 O (l)

- Jika larutan penyangga diencerkan

Pengenceran larutan merupakan penambahan air (H 2 O) pada larutan. Air (H 2 O) akan mengalami reaksi kesetimbangan menjadi H + dan OH -, namun H 2 O yang terurai sangat sedikit. Jadi, konsentrasi H + dan OH - sangat kecil, sehingga dapat diabaikan.

b. Larutan Penyangga Basa B/BH +

B (aq) + H 2 O (l) --> BH + (aq) + OH - (aq)

- Penambahan sedikit asam kuat (H + )

H + dari asam kuat dapat bereaksi dengan OH - pada larutan, sehingga konsentrasi OH - menurun dan reaksi kesetimbangan akan bergeser ke kiri. Basa lemah (B) dalam larutan akan bereaksi dengan H 2 O membentuk asam konjugasinya dan ion OH - .

H + (aq) + OH - (aq) → H 2 O (l)

B (aq) + H 2 O (l) → BH + (aq) + OH - (aq)

Pada kesetimbangan yang baru tidak terdapat perubahan pH yang nyata, besarnya pH dapat dipertahankan. Basa lemah dapat menetralkan penambahan sedikit asam (H + ).

B (aq) + H + (aq) → BH + (aq)

- Penambahan sedikit basa kuat (OH - )

Adanya basa kuat (OH - ) dapat meningkatkan konsentrasi OH - dalam larutan, sehingga reaksi kesetimbangan akan bergeser ke kiri. Namun adanya asam konjugasi (BH + ) dapat menetralkan kehadiran OH - dan membentuk B dan H 2 O. Sehingga pada kesetimbangan tidak terdapat perubahan konsentrasi OH - yang nyata, dan pH larutan dapat dipertahankan.

BH + (aq) + OH - (aq) → B (aq) + H 2 O (l)

- Penambahan air (pengenceran)

Penambahan H 2 O dalam larutan akan langsung terionisasi menjadi H + dan OH -, namun konsentrasi H + dan OH - sangat kecil, sehingga dapat diabaikan.

 
 

Larutan Penyangga

Larutan penyangga atau larutan buffer adalah larutan yang dapat mempertahankan pH pada kisarannya. Jika pada suatu larutan penyangga ditambah sedikit asam atau ditambahkan sedikit basa atau diencerkan, maka pH larutan tidak berubah.

1. Larutan Penyangga Asam

Larutan ini dapat mempertahankan pH pada daerah asam (pH < 7). Larutan penyangga asam terdiri dari asam lemah (HA) dan basa konjugasinya (A - ). Larutan ini dapat dibuat dengan mencampurkan larutan asam lemah dengan garamnya. Contoh, larutan penyangga dari campuran asam asetat dengan natrium asetat. Persamaan reaksinya adalah sebagai berikut.

CH 3 COOH (aq) --> CH 3 COO - (aq) + H + (aq)

Larutan ini juga dapat dibuat dari campuran asam lemah dengan basa kuat, dengan catatan basa kuat harus habis bereaksi, sehingga pada akhir reaksi hanya terdapat asam lemah dan garamnya (basa konjugasinya).

CH 3 COOH (aq) + NaOH (aq) --> CH 3 COONa (aq) + H 2 O (l)

HA (aq) --> A - (aq) + H + (aq)

Asam lemah Basa konjugasi

2. Larutan Penyangga Basa

Larutan ini dapat mempertahankan pH pada daerah basa (pH > 7). Larutan penyangga basa terdiri dari basa lemah (B) dan asam konjugasinya (BH + ). Larutan ini bisa dibuat dengan mencampurkan larutan basa lemah dengan garamnya. Contoh, larutan penyangga dari campuran amonia dengan amonium klorida. Persamaan reaksinya adalah sebagai berikut.

NH 3 (aq) + H + (aq) --> NH 4 + (aq)

Larutan ini juga dapat dibuat dari campuran basa lemah dengan asam kuat, dengan catatan asam kuat harus habis bereaksi, sehingga pada akhir reaksi hanya terdapat basa lemah dan garamnya (asam konjugasinya). Persamaan reaksinya adalah sebagai berikut.

NH 3(aq) + HCl (aq) --> NH 4 Cl (aq)

reaksi kesetimbangan pada larutan penyangga adalah sebagai berikut

B (aq) + H 2 O (l) --> BH + (aq) + OH - (aq)

 
 

Bagaimanakah urutan kekuatan asam dari senyawa-senyawa HCl, HClO, HClO2, HClO3, dan HClO4?

Trend kekuatan asam diatas dapat ditentukan dengan parameter berikut:

  • Kekuatan asamnya akan semakin besar dengan semakin banyaknya oksigen yang terikat pada atom pusat.
  • Kekuatan asam akan semakin besar dengan semakin besarnya bilangan oksidasi atom pusat (dalam kasusini adalah atom Cl)

Dengan menggunakan parameter diatas tentunya kamu sudah bisa mengurutkan kekuatan asam dari senyawaan diatas bukan? Untuk mengetahui “Kenapanya” maka anda bisa membaca keterangan berikut ini dan Struktur asam-asam tersebut adalah:

Penjelasan secara kualitatif

Menurut Bronsted-Lowry asam adalah donor proton, jadi kekuatan asam ditentukan oleh seberapa mudah suatu spesies untuk mendonorkan protonnya. Semakin mudah suatu spesies mendonorkan protonnya maka keasamannya akan semakin kuat begitu juga dengan sebaliknya. Mudah tidaknya suatu spesies asam untuk mendonorkan protonnya dapat dilihat dari seberapa besar harga Ka dan seberapa besar asam tersebut terionisasi dalam larutan.

Kita perhatikan senyawaan HClO, HClO 2, HClO 3, dan HClO 4 yang terionisasi dalam air dengan reaksi sebagai berikut:

HClO + H 2 O -> H 3 O + + ClO -
HClO 2 + H 2 O -> H 3 O + + ClO 2 -
HClO 3 + H 2 O -> H 3 O + + ClO 3 -
HClO 4 + H 2 O -> H 3 O + + ClO 4 -

Semakin besar jumlah spesies asam yang terionisasi maka asam tersebut akan semakin kuat dan sebaliknya.

Bagaimana kita dapat menentukan asam-asam diatas, yang mana yang akan terionisasi sempurna dan mana yang terionisasi sebagian untuk dapat kita gunakan dalam menentukan kekuatan asamnya?

Cara yang dapat kita gunakan adalah dengan menentukan kestabilan anion sisa asam dalam larutan yaitu anion ClO -, ClO 2 -, ClO 3 -, dan ClO 4 -. Semakin stabil anionnya maka semakin banyak asamnya terionisasi dan otomatis asamnya semakin kuat.

Bagaimana kita dapat menentukan kestabilan anion-anion tersebut?

Jawabanya adalah dengan cara melihat bagaimana anion tersebut mendistribusikan muatan negatifnya ( atau dengan kata lain melihat struktur resonansinya). Semakin banyak jumlah atom oksigen maka anion diatas semakin stabil, karena semakin banyak jumlah atom oksigen yang dapat menerima pendistribusian muatan negatifnya, hal ini juga berarti anion tersebut memiliki banyak struktur resonansi.

Sebagai ilustrasi, kita lebih ringan membawa suatu beban bersama 4 orang daripada membawa beban yang sama dengan dua orang saja. Untuk kasus diatas anggap saja bebanya adalah muatan negatif, ion ClO 4 - dapat mendistribusikan muatan negatifnya pada 4 atom oksigen sedangkan ion ClO 3 - hanya dapat mendistribusikan muatan negatifnya pada 3 atom oksigen, dua untuk ion ClO 2 -, dan sayangnya ion ClO - tidak bisa mendistribusikan muatan negatifnya, sehingga ClO 4 - jauh lebih stabil dibanding anion yang lain.

Dengan demikian urutan anion yang stabil diatas adalah ClO 4 - >ClO 3 - >ClO 2 - >ClO - . Ingat semakin stabil anion artinya semakin banyak asam yang terionisasi sehingga kekuatan asamnya juga semakin besar oleh sebabitu urutan kekuatan asamnya dari yang terbesar adalah HClO 4 > HClO 3 > HClO 2 > HClO.

Dengan melihat harga Ka/pKa

Harga pKa dari asam diatas adalah:

pKa HCl = -8
pKa HClO = 7,53
pKa HClO 2 = 2
pKa HClO 3 = -1
pKa HClO 4 = -10

Semakin kecil harga pKa maka semakin kuat keasamannya, jadi menurut harga diatas maka kekuatan asamnya dari yang terbesar adalah HClO 4 > HCl >HClO 3 > HClO 2 > HClO. Dari data diatas harga pKa HCl, HClO 3, dan HClO 4 adalah negatif disebabkan asam-asam ini adalah asam kuat. kekuatan HCl adalah bisa dikatakan hampir sama dengan HClO 4, kemungkinan ini disebabkan karena HCl dalam bentuk larutan [HCl (aq)] bersifat sebagai senyawa ionik sehingga HCl mudah melepaskan protonnya. (HCl berupa gas merupakan asam lemah karena ikatan H-Cl dalam bentuk gas bersifat kovalen).

Note:
HCl dalam pembahasan yang pertama tidak saya sertakan disebabkan kita tidak bisa membandingkan kekuatan asam HCl secara kualittaif dengan HClO, HClO 2, HClO 3, dan HClO 4 yang merupakan asam oksi. Kita lebih mudah membandingkan kekuatan keasaman HCl secara kualitatif dengan HI, HBr, atau HF.

 
 

Penetralan asam basa

Mengingat asam dalam air menghasilkan ion H + dan basa dalam air akan menghasilkan ion OH -, maka bila kedua larutan dicampur ion H + akan bereaksi dengan ion OH - menghasilkan air. Larutan tidak lagi bersifat asam maupun basa, reaksi semacam ini disebut reaksi netralisasi (penetralan) yang dapat ditulis ditulis sebagai berikut:

Asam + Basa --> Garam + Air

Pada reaksi asam dan basa kosentrasi asam dan basa dapat ditentukan dengan suatu metode kuantitatif dengan cara titrasi, yaitu cara analisis tentang pengukuran jumlah larutan yang dibutuhkan untuk bereaksi dengan tepat dengan zat yang terdapat dalam larutan asam atau basa dengan ditandai adanya perubahan warna. Pada saat perubahan warna, titrasi dihentikan dan kadar asam basa dapat ditentukan dengan perhitungan stoikiometri.

a. Penetralan asam kuat oleh basa kuat

Mula-mula pH larutan naik sedikit demi sedikit, kemudian terjadi perubahan yang cukup drastis pada sekitar titik ekivalen. Titik ekivalen terjadi pada saat pH larutan 7, dimana asam dan basa tepat habis bereaksi. Untuk menunjukkan titik ekivalen dapat digunakan indikator mrtil merah, bromtimol biru atau fenolftalein. Indikator-indikator tersebut menunjukkan perubahan warna pada sekitar titik ekivalen. Fenolftalein lebih sering digunakan karena memberikan perubahan warna yang lebih tajam disekitar titik ekivalen.

b. Penetralan asam lemah oleh basa kuat

Titik ekivalen berada diatas 7, yaitu antara 8 dan 9. Lonjakan perubahan pH pada sekitar titik ekivalen lebih sempit, hanya sekitar 3 satuan, yaitu antara pH ± 7 sampai pH ± 10. Sebagai indikator digunakan fenolftalein, karena jika menggunakan metil merah akan terjadi perubahan warna sebelum tercapai titik ekivalen.

c. Penetralan basa lemah oleh asam kuat.

Titik ekivalen berada dibawah 7, lonjakan perubahan pH pada sekitar titik ekivalen lebih sempit, hanya sekitar 3 satuan, yaitu antara pH ± 7 sampai pH ± 4. Sebagai indikator digunakan metil merah (trayek ; 4,2 - 6,3)

 
 

kekuatan asam dan basa

Asam kuat apabila dilarutkan dalam air akan terionisai sempurna ( a =1). Sebagai contoh asam kuat antara lain :

HCl --> H + + Cl -

HNO 3 --> H + + NO 3 -

Begitu juga yang terjadi pada larutan basa kuat. Basa kuat jika dilarutkan dalam air akan mengalami ionisasi sempurna. Sebagai contoh basa kuat antara lain:

KOH --> K + + OH -

Ba(OH) 2 --> Ba 2+ + 2OH -

Tetapan ionisasi asam kuat dan basa kuat dalam air sama dengan 1 .

Asam lemah yaitu senyawa asam yang jika dilarutkan dalam air akan terionisassi sebagian (0< a <1).

Sebagai contoh asam lemah antara lain :

CH 3 COOH H + + CH 3 COO -

H 2 CO 3 2H + + CO 3 2-

Begitu juga yang terjadi pada larutan basa lemah. Basa lemah hanya terionisasi sebagian jika dilarutkan dalam air.

Sebagai contoh basa lemah antara lain:
NH 4 OH NH 4 + + OH -
Al(OH) 3 Al 3+ + 3OH -

Asam lemah HA dalam air akan terionisasi sebagian sebagai berikut:

HA H + + A -

Menurut hukum kesetimbangan

Jika [ H + ] = [ A - ] dan [ HA ] dianggap tetap karena HA yang terionisasi kecil, maka:

atau
Sehingga


Contoh soal:

Berapa konsentrasi ion H + padas suhu 20 0 C yang mengandung 0,1 M asam sianida (HCN) jika Ka = 4,9 x 10 -10 ?

Jawab:

Diketahui Ca = [HCN] = 0,1 M dan Ka = 4,9 x 10 -10

Dari rumus
, maka:
, sehingga

Basa lemah LOH dalam air akan terionisasi sebagian sebagai berikut:

LOH ⇄ L+ + OH-

Menurut hukum kesetimbangan

jika [ L + ] = [ OH - ] dan [ LOH ] dianggap tetap karena LOH yang terionisasi kecil, maka:

atau
sehingga



Contoh Soal:

Hitunglah harga konsentrasi ion OH - yang terdapat dalam larutan 0,01 M (CH 3 ) 2 NH jika harga Kb = 5,1 x 10 -4 !

Jawab:

Diketahui Cb = [(CH 3 ) 2 NH] = 0,01 M dan Kb = 5,1 x 10 -4

Dari rumus

maka dapat dihitung sebagai berikut:


 
 

Mengenal Asam Basa dengan indikator

a. Kertas lakmus

Kertas lakmus adalah kertas yang diberi suatu senyawa kimia sehingga akan menunjukkan warna yang berbeda setelah dimasukkan pada larutan asam maupun basa. Warna kertas lakmus akan berubah sesuai dengan larutannya seperti tertera dalam tabel 1.

Tabel 1. Warna kertas lakmus jika dikenai larutan asam basa


Jenis kertas lakmus
Dalam larutan bersifat
Asam
Basa
Netral
Merah
Biru
Merah
Merah
Biru
Biru
Merah
Biru

Dibawah ini diberikan beberapa pengujian dengan menggunakan kertas lakmus.

Tabel 2. Warna kertas lakmus bila ditetesi larutan sampel.

Zat
Lakmus merah
Lakmus biru
Air

HCl 0,1 M

NaOH 0,1 M

Tetap merah
Tetap merah
Biru
Tetap biru
Merah
Tetap biru

Dari data tersebut dapat disimpulkan bahwa:

1) Air bersifat netral karena tidak memberi perubahan warna pada kertas lakmus.

2) Larutan HCl bersifat asam karena dapat memerahkan lakmus biru.

3) Larutan NaOH bersifat basa karena dapat membirukan lakmus merah.

Penyebab sifat asam menurut Arrhenius adalah karena adanya ion H + jika zat tersebut dilarutkan dalam air, begitu juga sifat basa ditimbulkan karena adanya ion OH - yang terjadi oleh pelarutan zat dalam air.

Menurut teori Arrhenius, zat yang dalam air menghasilkan ion H + disebut asam danbasa adalah zat yang dalam air terionisasi menghasilkan ion OH - .

HCl --> H + + Cl -

NaOH --> Na + + OH -

Meskipun teori Arrhenius benar, pengajuan desertasinya mengalami hambatan berat karena profesornya tidak tertarik padanya. Desertasinya dimulai tahun 1880, diajukan pada 1883, meskipun diluluskan teorinya tidak benar. Setelah mendapat bantuan dari Van’ Hoff dan Ostwald pada tahun 1887 diterbitkan karangannya mengenai asam basa. Akhirnya dunia mengakui teori Arrhenius pada tahun 1903 dengan hadiah nobel untuk ilmu pengetahuan.

Sampai sekarang teori Arrhenius masih tetap berguna meskipun hal tersebut merupakan model paling sederhana. Asam dikatakan kuat atau lemah berdasarkan daya hantar listrik molar. Larutan dapat menghantarkan arus listrik kalau mengandung ion, jadi semakin banyak asam yang terionisasi berarti makin kuat asamnya. Asam kuat berupa elektrolit kuat dan asam lemah merupakan elektrolit lemah. Teori Arrhenius memang perlu perbaikan sebab dalam lenyataan pada zaman modern diperlukan penjelasanyang lebih bisa diterima secara logik dan berlaku secara umum. Sifat larutan amoniak diterangkan oleh teori Arrhenius sebagai berikut:

NH 4 OH --> NH 4 + + OH -

Jadi menurut Svante August Arrhenius (1884) asam adalah spesi yang mengandung H + dan basa adalah spesi yang mengandung OH -, dengan asumsi bahwa pelarut tidak berpengaruh terhadap sifat asam dan basa.


b. Menggunakan Indikator

Untuk pengetesan senyawa bersifat asam atau basa dapat dilakukan dengan menggunakan indikator. Indikator adalah suatu zat, yang warnanya berbeda-beda sesuai dengan konsentrasi ion-Hidrogen. Indikator umumnya merupakan suatu asamatau basa organik lemah, yang dipakai dalam larutan yang sangat encer. Asam atau basa indikator yang tidak terdisosiasi mempunyai warna yang berbeda dengan hasil disosiasinya, sehingga memudahkan praktikan dalam menentukan apakah larutan tersebut bersifat asam atau bersifat basa.

Tabel 3. Indikator yang ada di dalam Laboratorium

Indikator
Nama Kimia
Dalam asam
Dalam basa
Jangka pH

(Asam) biru kresilbrilian


(Asam) a -naftol benzein
Ungu metil

(Asam) merah kresol
(Asam) biru timol
Ungu meta kresol
Ungu bromo fenol

Jingga metil

Merah Kongo

Hijau bromo kresol

Merah metil

Merah klorofenol

(Litmus) azolitmin
Biru bromotimol

Ungu difenol

(Basa) merah kresol
a -Naftol-ftalein
(Basa) biru timol
(Basa) a -Naftol-benzein
Fenolftalein
Timolftalein

(Basa) biru kresilbrilian


Amino-dietilamino-metil difenazonium klorida

Pentametil p -rosanilia hidroklorida
O-kresolsulfon-ftalein
Timol-sulfon-ftalein
m-kresolsulfon-ftalein

Tetrabromofenol-sulfon ftalein

Dimetilamino-azo- benzena-natrium sulfonat

Asam difenil-bis-azo a -naftilamina-4-sulfonat

Tetrabromo-m-kresol sulfon ftalein

O-Karboksibenzena-azo dimetilanilina

Diklorofenol-sulfon ftalein


Dibromo-timol-sulfon ftalein

O-Hidroksi-difenil sulfon ftalein

O-Kresol-sulfon ftalein

a - Naftol-ftalein

Timol-sulfon ftalein



Amino-dietilamino-metil difenazonium klorida

Jingga-merah

Tak berwarna
Kuning

Merah
Merah
Merah
Kuning

Merah

Lembayung

Kuning

Merah

Kuning

Merah
Kuning

Kuning

Kuning
Kuning
Kuning
Kuning
Tak berwarna
Tak berwarna
Biru
Biru

Kuning
Hijau-biru

Kuning
Kuning
Kuning
Biru

Kuning

Merah

Biru

Kuning

Merah

Biru
Biru

Lembayung

Merah
Biru
Biru
Hijau-biru
Merah
Biru
Kuning

0,0-1,0

0,0-0,8
0,0-1,8

1,2-2,8
1,2-2,8
1,2-2,8
2,8-4,6

3,1-4,4

3,0-50

3,8-5,4

4,2-6,3

4,8-6,4

5,0-8,0
6,0-7,6

7,0-8,6

7,2-8,8
7,3-8,7
8,0-9,6
8,2-10,0
8,3-10,0
9,3-10,5
10,8-12,0

Sumber : G.Svehla. 1990: 57-58

Selain indikator diatas larutan asam dan basa dapat ditentukan dengan menggunakan bahan-bahan alami yang berwarna seperti dari kunyit, bunga sepatu merah, kulit manggis dan lain-lain. Untuk membuat warna ungu akan terbentuk pada suasana netral, larutan asam akan memberikan larutan berwarna ungu ke warna merah kecoklatan dan dalam larutan basa akan memberkan warna ungu ke biru kehitaman.

 
 

pH asam basa

pH adalah kepanjangan dari pangkat hidrogen atau power of hydrogen. pH larutan menyatakan konsentrasi ion H+ dalam larutan

Suatu zat asam yang di masukkan ke dalam air akan mengakibatkan bertambahnya ion hidrogen (H+) dalam air dan berkurangnya ion hidroksida (OH-). Sedangkan pada basa, akan terjadi sebaliknya. Zat basa yang dimasukkan ke dalam air akan mengakibatkan bertambahnya ion hidroksida (OH-) dan berkurangnya ion hidrogen (H+).

Jumlah ion H+ dan OH- di dalam air dapat di gunakan untuk menentukan derajat keasaman atau kebasaan suatu zat. Semakin asam suatu zat, semakin banyak ion H+ dan semakin sedikit jumlah ion OH- di dalam air. Sebaliknya semakin basa suatu zat, semakin sedikit jumlah ion H+ dan semakin banyak ion OH- di dalam air.

pH
Analog dengan pH
poh

NB: Jangan sampai keliru, banyak siswa yang kadang menghitung dengan menggunakan mol suat zat, tidak dirubah dalam molaritas. sehingga banyak terjadi kesalahan dalam menentukan besar pH suatu larutan.

rumus
sehingga untuk asam langsung dapat diketahui pH nya. tetapi untuk basa pH dapat dihitung dengan menghitung pOH terlebih dahulu, kemudian pH dihitung dengan menggunakan rumus
pH = 14 - pOH



 
 

Ionisasi Asam Basa

Kekuatan Asam dan Basa ditandai dengan banyak sedikitnya zat elektrolit yang terion dalam larutan dinyatakan dengan derajat ionisasi (derajat disosiasi),a.

Derajat disosiasi

a
Tetapan ionisasi Asam
rUMUS kA1
Ka
Makin besar Ka, maka makin kuat kuat asam
dengan kata lain, a = 1 adalah asam kuat, sedang asam lemah besarnya daya ionisasi adalah 0<a<1

Tetapan ionisasi Basa

LOH
rUMUS kB

Makin besar Kb, maka makin kuat kuat basa

Asam kuat atau basa kuat adalah asam atau basa yang dalam air sebagian besar atau seluruh molekulnya terurai menjadi ion-ionnya atau dikatakan sebagai terionisasi sempurna.
Asam lemah atau basa lemah ad alah asam atau basa yang dalam air sebagian kecil molekulnya terurai menjadi ion-ionnya

 
 

Tetapan kesetimbangan air

Air murni jika diukur daya hantar listriknya dengan amperemeter yang peka merupakan zat elektrolit, tapi elektrolit sangat lemah dan memiliki hantaran listrik. Adanya hantaran ini menunjukkan adanya ion-ion di dalam air murni sebagai hasil dari swa-ionisasai air.
Persamaan ionisasi air :

AIR

Karena berada dalam kesetimbangan maka,

kC

Oleh karena konsentrasi ion H + dan ion OH - dalam air murni adalah sama besarnya, maka air bersifat netral. Jika keadaan air ditambah asam, maka asam tersebut akan melepaskan ion H + yang berakibat konsentrasi ion H + akan bertambah banyak sehingga akan menggangu kesetimbangan air. Karena harga Kw tetap, akibatnya konsentrasi ion OH - akan berkurang. Sedangkan jika air ditambahkan basa kedalamnya, maka basa tersebut akan terionisasi dengan melepaskan ion OH -, akibatnya konsentrasi ion OH - dalam air akan menjadi lebih besar dan konsentrasi ion H + akan berkurang.

Oleh karena [H2O] dapat dianggap konstan, maka hasil kali Kc[H2O] adalah suatu konstanta yang disebut tetapan kesetimbangan yang disebut tetapan kesetimbangan air (Kw).

Pada saat air dalam keadaan netral, pH air = 7, sehingga didapatkan bahwa:

Kw = [H+].[OH-]

= (10 -7 ) 2

= 10 -14










 
 

Teori Asam Basa


A. MENURUT ARRHENIUS

Menurut teori Arrhenius, zat yang dalam air menghasilkan ion H + disebut asam danbasa adalah zat yang dalam air terionisasi menghasilkan ion OH - .

HCl --> H + + Cl -

NaOH --> Na + + OH -

Meskipun teori Arrhenius benar, pengajuan desertasinya mengalami hambatan berat karena profesornya tidak tertarik padanya. Desertasinya dimulai tahun 1880, diajukan pada 1883, meskipun diluluskan teorinya tidak benar. Setelah mendapat bantuan dari Van’ Hoff dan Ostwald pada tahun 1887 diterbitkan karangannya mengenai asam basa. Akhirnya dunia mengakui teori Arrhenius pada tahun 1903 dengan hadiah nobel untuk ilmu pengetahuan.

Sampai sekarang teori Arrhenius masih tetap berguna meskipun hal tersebut merupakan model paling sederhana. Asam dikatakan kuat atau lemah berdasarkan daya hantar listrik molar. Larutan dapat menghantarkan arus listrik kalau mengandung ion, jadi semakin banyak asam yang terionisasi berarti makin kuat asamnya. Asam kuat berupa elektrolit kuat dan asam lemah merupakan elektrolit lemah. Teori Arrhenius memang perlu perbaikan sebab dalam lenyataan pada zaman modern diperlukan penjelasanyang lebih bisa diterima secara logik dan berlaku secara umum. Sifat larutan amoniak diterangkan oleh teori Arrhenius sebagai berikut:

NH 4 OH --> NH 4 + + OH -

Jadi menurut Svante August Arrhenius (1884) asam adalah spesi yang mengandung H + dan basa adalah spesi yang mengandung OH -, dengan asumsi bahwa pelarut tidak berpengaruh terhadap sifat asam dan basa.

Sehingga dapat disimpulkan bahwa:

Asam ialah senyawa yang dalam larutannya dapat menghasilkan ion H + .

Basa ialah senyawa yang dalam larutannya dapat menghasilkan ion OH - .

Contoh:
1) HCl(aq) --> H + (aq) + Cl - (aq)
2) NaOH(aq) --> Na + (aq) + OH - (aq)

























B. MENURUT BRONSTED-LOWRY
Asam ialah proton donor, sedangkan basa adalah proton akseptor.

Teori asam basa dari Arrhenius ternyata tidak dapat berlaku untuk semua pelarut, karena khusus untuk pelarut air. Begitu juga tidak sesuai dengan reaksi penggaraman karena tidak semua garam bersifat netral, tetapi ada juga yang bersifat asam dan ada yang bersifat basa.

Konsep asam basa yang lebih umum diajukan oleh Johannes Bronsted, basa adalah zat yang dapat menerima proton. Ionisasi asam klorida dalam air ditinjau sebagai perpindahan proton dari asam ke basa.

HCl + H 2 O --> H 3 O + + Cl -

Demikian pula reaksi antara asam klorida dengan amoniak, melibatkan perpindahan proton dari HCl ke NH 3 .

HCl + NH 3 NH 4 + + Cl -

Ionisasi asam lemah dapat digambarkan dengan cara yang sama.

HOAc + H 2 O H 3 O + + OAc -

Pada tahun 1923 seorang ahli kimia Inggris bernama T.M. Lowry juga mengajukan hal yang sama dengan Bronsted sehingga teori asam basanya disebut Bronsted-Lowry. Perlu diperhatikan disini bahwa H + dari asam bergabung dengan molekul air membentuk ion poliatomik H 3 O + disebut ion Hidronium.

Reaksi umum yang terjadi bila asam dilarutkan ke dalam air adalah:

HA + H 2 O H 3 O + + A -

asam basa asam konjugasi basa konjugasi

Penyajian ini menampilkan hebatnya peranan molekul air yang polar dalam menarik proton dari asam.

Perhatikanlah bahwa asam konjugasi terbentuk kalau proton masih tinggal setelah asam kehilangan satu proton. Keduanya merupakan pasangan asam basa konjugasi yang terdi dari dua zat yang berhubungan satu sama lain karena pemberian proton atau penerimaan proton. Namun demikian disosiasi asam basa masih digunakan secara Arrhenius, tetapi arti yang sebenarnya harus kita fahami.

Johannes N. Bronsted dan Thomas M. Lowry membuktikan bahwa tidak semua asam mengandung ion H + dan tidak semua basa mengandung ion OH - .

Bronsted – Lowry mengemukakan teori bahwa asam adalah spesi yang memberi H + ( donor proton ) dan basa adalah spesi yang menerima H + (akseptor proton). Jika suatu asam memberi sebuah H + kepada molekul basa, maka sisanya akan menjadi basa konjugasi dari asam semula. Begitu juga bila basa menerima H + maka sisanya adalah asam konjugasi dari basa semula.

Teori Bronsted – Lowry jelas menunjukkan adanya ion Hidronium (H 3 O + ) secara nyata.

Contoh:

HF + H 2 O ⇄ H 3 O + + F -

Asam basa asa m konjugasi basa konjugasi

HF merupakan pasangan dari F - dan H 2 O merupakan pasangan dari H 3 O + .

Air mempunyai sifat ampiprotik karena dapat sebagai basa dan dapat sebagai asam.

HCl + H 2 O --> H 3 O + + Cl -

Asam Basa

NH 3 + H 2 O ⇄ NH 4 + + OH -

Basa Asam

Manfaat dari teori asam basa menurut Bronsted – Lowry adalah sebagai berikut:

1. Aplikasinya tidak terbatas pada pelarut air, melainkan untuk semua pelarut yang mengandunh atom Hidrogen dan bahkan tanpa pelarut.

2. Asam dan basa tidak hanya berwujud molekul, tetapi juga dapat berupa anion dan kation.

Contoh lain:
1) HAc(aq) + H 2 O(l) -->
H 3 O+(aq) + Ac - (aq)
asam-1 basa-2 asam-2 basa-1

HAc dengan Ac - merupakan pasangan asam-basa konyugasi.
H 3 O+ dengan H 2 O merupakan pasangan asam-basa konyugasi.

2) H 2 O(l) + NH 3 (aq) --> NH 4 + (aq) + OH - (aq)
asam-1 basa-2 asam-2 basa-1

H 2 O dengan OH - merupakan pasangan asam-basa konyugasi.
NH 4 + dengan NH 3 merupakan pasangan asam-basa konyugasi.

Pada contoh di atas terlihat bahwa air dapat bersifat sebagai asam (proton donor) dan sebagai basa (proton akseptor). Zat atau ion atau spesi seperti ini bersifat ampiprotik (amfoter).

Penulisan Asam Basa Bronsted Lowry

C. Menurut G. N. Lewis

Selain dua teori mengenai asam basa seperti telah diterangkan diatas, masih ada teori yang umum, yaitu teori asam basa yang diajukan oleh Gilbert Newton Lewis ( 1875-1946 ) pada awal tahun 1920. Lewis lebih menekankan pada perpindahan elektron bukan pada perpindahan proton, sehingga ia mendefinisikan : asam penerima pasangan elektron dan basa adalah donor pasangan elekton. Nampak disini bahwa asam Bronsted merupakan asam Lewis dan begitu juga basanya. Perhatikan reaksi berikut:

Reaksi antara proton dengan molekul amoniak secara Bronsted dapat diganti dengan cara Lewis. Untuk reaksi-reaksi lainpun dapat diganti dengan reaksi Lewis, misalnya reaksi antara proton dan ion Hidroksida:

Ternyata teori Lewis dapat lebih luas meliput reaksi-reaksi yang tidak ternasuk asam basa Bronsted-Lowry, termasuk kimia Organik misalnya:

CH 3 + + C 6 H 6 C 6 H 6 CH 3 +



Asam ialah akseptor pasangan elektron, sedangkan basa adalah Donor pasangan elektron.

Contoh:


Asam Lewis

Asam-Basa Lewis
 
 

Larutan elektrolit dan non elektrolit

Pada tahun 1884, Svante Arrhenius, ahli kimia terkenal dari Swedia mengemukakan teori elektrolit yang sampai saat ini teori tersebut tetap bertahan padahal ia hampir saja tidak diberikan gelar doktornya di Universitas Upsala, Swedia, karena mengungkapkan teori ini. Menurut Arrhenius, larutan elektrolit dalam air terdisosiasi ke dalam partikel-partikel bermuatan listrik positif dan negatif yang disebut ion (ion positif dan ion negatif) Jumlah muatan ion positif akan sama dengan jumlah muatan ion negatif, sehingga muatan ion-ion dalam larutan netral. Ion-ion inilah yang bertugas mengahantarkan arus listrik. Larutan yang dapat menghantarkan arus listrik disebut larutan elektrolit.
Larutan ini memberikan gejala berupa menyalanya lampu atau timbulnya gelembung gas dalam larutan.
Larutan elektrolit mengandung partikel-partikel yang bermuatan (kation dan anion). Berdasarkan percobaan yang dilakukan oleh Michael Faraday, diketahui bahwa jika arus listrik dialirkan ke dalam larutan elektrolit akan terjadi proses elektrolisis yang menghasilkan gas. Gelembung gas ini terbentuk karena ion positif mengalami reaksi reduksi dan ion negatif mengalami oksidasi. Contoh, pada laruutan HCl terjadi reaksi elektrolisis yang menghasilkan gas hidrogen sebagai berikut.
HCl(aq)→ H+(aq) + Cl-(aq)
Reaksi reduksi : 2H+(aq) + 2e- → H2(g)
Reaksi oksidasi : 2Cl-(aq) → Cl2(g) + 2e-

Larutan elektrolit terbagi menjadi 2 macam, yaitu elektrolit kuat dan larutan elektrolit lemah

Pada larutan elektrolit kuat, seluruh molekulnya terurai menjadi ion-ion (terionisasi sempurna). Karena banyak ion yang dapat menghantarkan arus listrik, maka daya hantarnya kuat. pada persamaan reaksi, ionisasi elektrolit kuat ditandai dengan anak panah satu arah ke kanan.

Contoh :
NaCl(s) → Na+ (aq) + Cl- (aq)

Contoh larutan elektrolit kuat :

Asam, contohnya asam sulfat (H2SO4), asam nitrat (HNO3), asam klorida (HCl)

Basa, contohnya natrium hidroksida (NaOH), kalium hidroksida (KOH), barium hidroksida (Ba(OH)2)

Garam, hampir semua senyawa kecuali garam merkuri

Larutan elektrolit lemah adalah larutan yang dapat memberikan nyala redup ataupun tidak menyala, tetapi masih terdapat gelembung gas pada elektrodanya. Hal ini disebabkan tidak semua terurai menjadi ion-ion (ionisasi tidak sempurna) sehingga dalam larutan hanya ada sedikit ion-ion yang dapat menghantarkan arus listrik. Dalam persamaan reaksi, ionisasi elektrolit lemah ditandai dengan panah dua arah (bolak-balik).

Contoh :
CH3COOH(aq) ↔ CH3COO- (aq) + H+ (aq)

Contoh senyawa yang termasuk elektrolit lemah :

CH3COOH, HCOOH, HF, H2CO3, dan NH4OH
Larutan elektrolit dapat bersumber dari senyawa ion (senyawa yang mempunyai ikatan ion) atau senyawa kovalen polar (senyawa yang mempunyai ikatan kovalen polar)

Sedangkan larutan non elektrolit adalah larutan yang tidak dapat menghantarkan arus listrik dan tidak menimbulkan gelembung gas. Pada larutan non elektrolit, molekul-molekulnya tidak terionisasi dalam larutan, sehingga tidak ada ion yang bermuatanyang dapat menghantarkan arus listrik.

Contoh : larutan gula, urea


 
Page 1 of 1. Total : 17 Posts.